Forschung


Neueste SCI Publikationen

Neueste Projekte

Forschungsprojekt aus §26 oder §27 Mitteln
Laufzeit : 2017-10-01 - 2020-09-30

Durch die Nutzung von geeigneten Funktionalisierungsansätzen mithilfe moderner nanotechnologischer Prozesse kann Holz in seinen vielfältig verfügbaren Ausführungsformen an poröser und anisotroper Struktur mit völlig neuen Eigenschaftsprofilen versehen werden. Durch eine neuartige Strategie funktionelle Polymerketten kovalent in die Holzzellwandstruktur bzw. an die inneren Zelloberflächen auf zu polymerisieren, werden holzbasierte Materialien mit einem bisher unerreichten Eigenschaftsprofil erzeugt. Um die Positionierung, die Verteilung und die Funktion der so eingebrachten funktionellen Polymere kontrollieren und designen zu können ist ein deutlich tieferes Materialverständnis sowohl des Ausgangsmaterials als auch des funktionalisierten Materials erforderlich, als dies bislang in der Forschung notwendig erschien. Um den Modifizierungsprozess entsprechend unterstützen zu können, sind daher geeignete Charakterisierungstechniken für die Ansprüche am Substrat Holz heranzuziehen, die bisher in der Holzforschung kaum zum Einsatz kamen. Chemical-Force Mikroskopie (CFM) ist hier die Schlüsselmethode, die sowohl in der Lage ist die Funktionalität der in die Holzstruktur eingebrachten chemisch-funktionellen Gruppen als auch deren Verteilung in der notwendig hohen Ortsauflösung zu bestimmen. CFM ist eine sehr flexible Rasterkraftmikroskopie basierte Methode, die sowohl in gasförmigen als auch flüssigen Umgebungsbedingungen arbeiten kann und für die auch die kleinsten Zellwandmerkmale zugänglich sind. Die Charakterisierung der eingebrachten Funktionalitäten und die Rückmeldung zu den erzielten Eigenschaftsprofilen sollen im Rahmen des beantragten Dissertationsprojektes durchgeführt werden.
Forschungsprojekt aus §26 oder §27 Mitteln
Laufzeit : 2017-09-01 - 2019-08-31

Holz ist auch heute einer der wichtigsten Roh- und Werkstoffe. Die Verarbeitung von Holz hat sich jedoch wesentlich verändert – weg von der bäuerlichen oder handwerklichen Bearbeitung hin zu hochmodernen Industrieprodukten. Das Wissen um die Holzauswahl, Lagerung, Bearbeitung usw. wurde traditionell von Generation zu Generation weitergegeben. Nur in Ausnahmefällen gibt es schriftliche Aufzeichnungen. Erst im 14. Jahrhundert entwickelten sich spezielle Handwerke. Doch auch hier herrschte die mündliche Überlieferung des Wissens vor. Die vorhandenen Publikationen beschreiben oft nicht die notwendigen Details, um Arbeitsschritte nachvollziehen zu können, oder zu verstehen, warum eine spezielle Holzart für diesen Zweck eingesetzt wurde. Das Ziel des Projektes ist eine lückenlose Dokumentation ausgewählter Holzhandwerkstechniken. Dies erfordert neue Konzepte des Drehens, die entsprechend einem stark partizipatorischen Ansatz von Schüler/innen und Wissenschaftler/innen gemeinsam entwickelt werden. So können beispielsweise Stirnkameras, 360° Video und VR-Inhalte verwendet werden, um die Arbeitsschritte optimal mitzuverfolgen. Jedes Konzept wird vorab mit den Handwerker/innen und den Wissenschaftler/innen (Holzforschung, Volkskunde, Medientechnik) diskutiert. Es muss bereits vor den Filmaufnahmen bekannt sein, was die „Schlüsselstellen“ sind und wie man sie am besten dokumentieren kann. Handwerklich interessierte Personen sollen anhand der Filme diese Techniken imitieren können. Einerseits sollen detailreiche Videodokumentationen entwickelt und andererseits eine moderne Verbreitung durchgeführt werden, um Menschen für das Handwerk zu begeistern. Diese Filme müssen deshalb online verfügbar sein, mobil nutzbar und für Jugendliche ansprechend gestaltet werden. Nur so ist es möglich, Jugendliche für Handwerk generell zu begeistern und einen niederschwelligen Zugang zu ermöglichen. Die Schüler/innen leisten hier einen essentiellen aktiven Beitrag zur Produktion und Präsentation.
Forschungsprojekt aus §26 oder §27 Mitteln
Laufzeit : 2017-03-01 - 2021-02-28

Aktuelle und zukünftige Herausforderungen im Mobilitätssektor (Spritreduktion, CO2-Balanz, selbstfahrende Autos, Elektromobilität, Stadtautos und Spezialfahrzeuge) verlangen nach neu-en Fahrzeugkonzepten. Nach neue Materialien und Materialkombinationen wird intensiv ge-sucht. Glas- und Karbonfaserverbundwerkstoffe stellen hervorragende, leistungsfähige und vielversprechende Alternativen zu bestehenden Metall- und Kunststoffwerkstoffen dar. Aller-dings bedingt ihr Einsatz gewisse Limitierungen und Nachteile hinsichtlich Berechenbarkeit, Verarbeitbarkeit und ökologischer Bewertung, sowie erhöhte Material-, Produktions- und Ent-sorgungskosten entlang des gesamten Lebenszyklus. Holz besitzt hervorragende Festigkeits-, Steifikeits- und Standfestigkeitswerte, exzellentes Dämpfungsverhalten bei geringer Dichte (ca. 0.6 g/cm³, im Vergleich zu 1,5 und 7.8 g/cm³ zu CFK bzw. Stahl) und geringen Rohstoffkosten. Richtig eingesetzt, sind Holzwerkstoffe kompetitiv zu faserverstärkten Kunststoffen und Metal-len. Der Rohstoff Holz ist in großen Mengen weltweit (insbesondere in Europa auch mit ent-sprechender Qualität) nachhaltig verfügbar und ist der einzige natürliche Massenrohstoff für Bau- und Werkstoffanwendungen. Die technische Leistungsfähigkeit des Materials für techni-sche Anwendungen ist durch den Jahrzehnte langen Einsatz in der Luftfahrttechnik und durch Fahrzeuganwendungen (z.B. Morgan Sportwagen) belegt. Zusammengefasst, verfügt Holz über Eigenschaften, die einen breiten Einsatz im Mobilitätssektor rechtfertigen. Durch die Ein-beziehung des Werkstoffs Holz kann die Palette möglicher Werkstoffe für das Material Engine-ering erweitert werden, wodurch ein wertvoller Beitrag für Kosten- und Gewichtsreduktion so-wie CO2-Balanz geleistet werden kann. Der Einsatz von Holz in den angesprochenen Bereichen erfordert allerdings eine präzise und zuverlässige Materialbeschreibung für einen geeigneten Materialeinsatz und eine entspre-chende mathematische Beschreibung des Materialverhaltens im Belastungs- und Crashfall auch unter Berücksichtigung der natürlichen Rohstoffvariabilität. Bis dato konnten Materialda-ten und Materialkarten von Holz für Simulation bei dynamischer Belastung und im Crashfall nicht zur Verfügung gestellt werden. Ebenso fehlte eine Einschätzung des technischen und wirtschaftlichen Potentials von Holz für diese Anwendungen. Im Zuge einer kürzlich durchge-führten Machbarkeitsstudie (650.000 EUR Gesamtbudget) konnte nachgewiesen werden, dass das Materialverhalten unter statischen und dynamischen Belastungen sowie in Crashsituatio-nen hervorragend simuliert werden kann. Motiviert durch diese ersten Ergebnisse soll nun aufbauend auf die bisherigen Ergebnisse im Rahmen von WoodCAR (Wood – Computer Aided Research) eine solide Basis für die Materi-alsimulation von Holz und Holzwerkstoffen mit gängigen Softwarelösungen geschaffen wer-den, die einen Einsatz von Holz in der Fahrzeugindustrie und ähnlichen Anwendungen ermög-licht. Für die industrielle Implementierung von Holz für ausgewählte Anwendungszwecke müs-sen neue Produktionskonzepte entwickelt werden sowie geeignete Verbindungstechnologien gefunden werden. Zusätzlich sollen Qualitätsanforderungen und ökonomische Aspekte be-leuchtet werden, um den gehobenen Anforderungen der Automobilindustrie zu genügen.

Betreute Hochschulschriften

FIS